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1 Introduction

The origin of the electroweak symmetry breaking is still a mystery since the Higgs boson
has not been discovered yet. Extra dimensions open up new possibility for it. For example,
it can occur by nontrivial boundary conditions or the Wilson line phases along the extra
dimensions, such as the Higgsless models [1] or the gauge-Higgs unification models [2]-[6].
Since these models are based on higher dimensional gauge theories and are thus nonrenor-
malizable, they should be interpreted as effective theories of more fundamental theories,
which are valid below certain cutoff energy scales. This implies that the tree-level unitarity
is violated at some scale, which is identified with the cutoff scale of the model. When we
work in a higher dimensional theory, we have to know the cutoff scale of the theory in order
to ensure the validity of the perturbative calculation.

The tree-level unitarity is usually discussed by evaluating the scattering amplitudes of
the longitudinally polarized weak bosons I/VLi and Zp, at tree-level. In the standard model,
the Higgs boson plays an important role for the recovery of the tree-level unitarity. If it
is sufficiently heavy and decoupled, the scattering amplitudes for le,[ and Z;, grow as E?
where F is the energy scale of the scattering, and exceed the unitarity bound at some scale



around 1 TeV. This means that the perturbative calculation is no longer reliable above the
scale. In the Higgsless models, the tree-level unitarity is recovered by the Kaluza-Klein
(KK) modes of the gauge bosons [1] instead of the Higgs boson in the standard model, and
the unitarity violation delays up to O(10 TeV) when the compactification scale is assumed
to be around 1TeV.

The situation is more complicated in the gauge-Higgs unification models because they
have the Higgs mode (the fluctuation of the Wilson line phase 0y) as well as the KK
modes of the gauge bosons, both of which participate in the unitarization of the theory. In
these models, both the coupling constants and the KK mass scale depend on #y and thus
the scattering amplitudes for I/VLi and Zj have nontrivial fp-dependences. Especially the
gauge-Higgs unification in the Randall-Sundrum warped spacetime [7]-[11] is interesting
because the WW H and the ZZ H couplings (H stands for the Higgs mode) deviate from the
standard model values and vanish for some specific values of 6y, such as m or 7/2, depending
on the models [10, 11]. For such values of 6y, the Higgs mode cannot participate in the
unitarization of the weak boson scattering. Therefore it is important to understand the
Or-dependence of the scattering amplitudes for ch and Z, in order to estimate the cutoff
scale of the models from the violation of the tree-level unitarity. This issue is discussed in
ref. [12] and some qualitative behaviors of the amplitude are clarified.

In this paper, we investigate various behaviors of the scattering amplitude more quan-
titatively by numerical calculations. We focus on the process: Wzr +W, — Z;,+Zy in the
gauge-Higgs unification model based on the five-dimensional (5D) SU(3) gauge theory on
S1/Zy as the simplest example. Although this model gives the wrong value of the Weinberg
angle Ay, and thus is not realistic, it has a lot of common features among the gauge-Higgs
unification models. Hence it is a good starting point to understand the behaviors of the
amplitudes peculiar to the gauge-Higgs unification. The Wilson line phase 61, which cor-
responds to the vacuum expectation value (VEV) of the Higgs field in the standard model,
is dynamically determined at one-loop order if the whole matter content of the model is
specified. In the following discussion, we do not specify the fermion sector and treat 0y as
a free parameter because we are interested in the tree-level amplitude.

The paper is organized as follows. In section 2, we briefly review the SU(3) gauge-Higgs
unification model and provide necessary ingredients to calculate the scattering amplitude
for the weak bosons. In section 3, we provide explicit expressions of the scattering am-
plitudes for the longitudinal weak bosons and for the (would-be) Nambu-Goldstone (NG)
bosons, and show their behaviors as functions of F, 6y and the warp factor. Section 4 is
devoted to the summary and discussions. In appendix A, we give definitions and explicit
forms of the basis functions used in the text. In appendix B, we derive the 5D propagators
of the gauge fields.

2 SU(3) model

2.1 Set-up

We consider the 5D SU(3) gauge theory compactified on S'/Z5 as the simplest example
of the gauge-Higgs unification. Arbitrary background metric with 4D Poincaré symmetry



can be written as
ds? = GyndeMdxy = 6720(y)nﬂydx“dx" + dy?, (2.1)
where M, N = 0,1,2,3,4 are 5D indices and 7,, = diag(—1,1,1,1). The fundamental
region of S! /Z5is 0 <y < L. The function "W is a warp factor, which is normalized as
0(0) = 0. For example, o(y) = 0 in the flat spacetime, and o(y) = ky (0 <y < L) in the
Randall-Sundrum spacetime [13], where k is the inverse AdS curvature radius.
The 5D gauge field Aps is decomposed as

8 \@
Ay = ZA%?’ (2.2)
a=1
where \* are the Gell-Mann matrices. The 5D Lagrangian is
1 1
L=vV-G [—tr {§GMLGNPFMNFLP + ¢ (fgf)QH + o (2.3)

where V=G = \/—det(Gyn) = e 47, Fyn = OuAn — OnAn — igs [An, An] (g5 is the
5D gauge coupling), and £ is a dimensionless parameter. The ellipsis denotes the ghost
and the matter sectors, which are irrelevant to the following discussion. The gauge-fixing
function fg is chosen as

Jet = 20 {n“”BMA,, + {Dg (672"Ay)} ,
DE Ay = 9y Anr — igs [Agg,AM} : (2.4)

where Agg(y) is the classical background of A,(z,y).
The boundary conditions for the gauge field is written as

Au(ma _y) = POAM(may)PO_17 Au(l', L+ y) = PLAM(xa L— y)Pila
Ayl —y) = ~PoAy(a. )Py, Ay(a,L+y) = —PoAy@,L—y)P,  (25)
where Py and P; are unitary matrices satisfying the relation PO2 = P]% = 1. By choos-

ing them as Py = P = diag(—1,—1,1), the Zy-parity eigenvalues (P, P) of the gauge
fields become

(+’+) (+’+) (_’_) (_’_) (_’_) (+’+)
Aﬂ - (+’+) (+’+) (_’_) ) Ay = (_’_) (_’_) (+’+) . (2'6)
(_’_) (_’_) (+’+) (+’+) (+’+) (_’_)

Note that only (+,+) fields can have zero-modes when perturbation theory is developed
around the trivial configuration Ay; = 0. Thus the SU(3) gauge symmetry is broken to
SU(2) x U(1) at tree-level. The zero-modes of A, form an SU(2)-doublet 4D scalar (A‘y1 +
iAg, AS + iAZ), which plays a role of the Higgs doublet in the standard model whose VEV
breaks SU(2) x U(1) to U(1)gm. They yield non-Abelian Aharonov-Bohm phases (Wilson
line phases) when integrated along the fifth dimension. By using the residual SU(2) x U(1)
symmetry, we can always push the nonvanishing VEV into AZ. Then the Wilson line
phase 0y is given by

L
P /0 dy APE7(y). 27)



2.2 Mode expansion

The mode expansion of the 5D gauge fields is performed in a conventional way (see ref. [§],
for example). For the following discussion, it is convenient to move to the momentum
representation for the 4D part while remain the coordinate representation for the fifth
dimension. Then the 5D gauge fields are expanded into the KK modes as

Aa p, Z u _|_ Z ’U) puA(n )
A% (p,y) = Zvn )™ (p). (2.8)

n

Here we have moved to the Scherk-Schwarz basis, in which Aty)g = 0. It is related to the

original basis by the gauge transformation,

Ay = QAp Q0 — L G 0, (2.9)
95
with
Y 2\
Qy) = Pexp {_1'95/ dy/ A2g7(y/) . 7} ) (2.10)
0

The symbol P stands for the path ordered operator from left to right. Notice that flfj (p,y)

are decomposed into two parts, according to their polarization. In the above expression,

Afln) (p) are polarized as p“AELn) (p) = 0 and include the transverse and the longitudinal

modes, which are physical for the massive modes. On the other hand, A(Sn) (p) are unphysical

scalar modes. The gauge-scalar modes (") (p) are also unphysical besides the zero-mode.
The mode functions wg (y) and v$(y) are related to each other by

) = -ut)
wl0) = g {00} (211)

n)

where m,, are common mass eigenvalues for Aé and o™ . These relations hold irrespective

of the value of the gauge parameter £&. When £ = 1, they are further related to u%(y) as

up (y) = muwp(y), My =y, (2.12)
(n)

where m,, are mass eigenvalues for A,

According to the transformation properties under the unbroken U(1)gy symmetry
and the rotation by a constant matrix (L), the gauge fields are classified into the charged
sector (A}\j[iQ,AﬁEiE’) = (A}, +iA%, A%, +iA3,)/V/2 and the neutral sectors (A3, AS,),

A?\/[ and A%;I, where
3/ 1 V3 3
Agy = % 2 Ag : (2.13)
i\ —¥3 2 A3,

The W, Z bosons and the photon are identified with the lowest modes in the (A}f”a, Aﬁii‘:’)—,
the (Az,, Aﬁ)— and the Ag—sectors, respectively.



The mode functions for the W boson are calculated as

ugy (y) = uy ™ (y) = NweoSo(L, mw)Co(y, mw),
uly (y) = ug ™ (y) = —NwspCo(L, mw)So(y, mw), (2.14)

where ¢y = cos(0u/2), sg = sin(fu/2), and Co(y,m), So(y,m) are the basis functions
defined in appendix A. The mode functions for the Z boson are

u (y) = ud (y) = Nz cos 0So(L, mz)Co(y, mz),
u%(y) = ug(y) = —Nzsin0gCo(L,mz)So(y,myz). (2.15)

Here the normalization constants Ny and Ny are determined by

/OLdy {(uy)? + (uiy)*} =1, /OLdy {(@’)2 n (u%)Q} 1 (2.16)

and the W and the Z boson masses myy and myz are the lowest solutions of

1 ag
e {C(')(L,mW)SO(L,mW) + mye (L)sg} =0,
1 {Cé(L,mZ)SO(L,mZ) + mze? ) sin? HH} =0, (2.17)
mz

respectively. The prime denotes the derivative for y. In the flat spacetime, for example,
they are written for 0 < g < 7 as

o _ | | — 26y

mw_ﬁ7 mgz 97,

(2.18)

For the corresponding gauge-scalar modes, the mode functions vll,l’f(y), vg’ﬁ(y) and
their masses are obtained similarly.

2.3 5D propagators

For the purpose of calculating the scattering amplitude, it is convenient to use the 5D
propagators defined in a mixed momentum/position representation [14]. It describes the
propagation of the entire KK tower of excitations carrying the 4D momentum p between
two points y and 3’ in the extra dimension. This approach has an advantage that we need
not explicitly calculate the mass eigenvalues for the modes propagating in the internal
lines of the Feynmann diagrams nor sum over contributions from the infinite number of
KK modes.! The explicit forms of the 5D propagators can be obtained by using the
formula (B.10). For the charged sector (A}[HQ, Aﬁ”‘:’), the 5D propagator is calculated as

Gty — 0 (e SLICrw)
T ety W —So(y)Ch(L)SL(Y)

~s0lp[ € (59Co(y)So(y') coColy)So(y/
det(1,9y W \ c9S0(y)Co(y") —s6S0(y)Co(y')

Grs(y,y) = {Gr<(v, )}, (2.19)

!This approach is also useful for models with continuum spectra [15].




where [p| = \/—p?, and det(y 4) is the determinant of VW defined in (B.11) restricted to the
(A}[HQ, Af‘fﬁ)—sector and

det( )W = = [p| e {CHL)S0(L) + |p| s} (2.20)

In the above expressions, we have omitted |p| from the arguments. For the (AE’L/,A?L)—
sector, the propagator is obtained from the above expressions by replacing 6y/2 with 0y.
The propagators in the other sectors are calculated as

Jo(£) S0(y: [P SL(y', Ip])
Ipl So(L,|pl)

_ 200) €0, [PDCL(Y', [pl)
AT (2.21)

G (y,y,|p|) =

GE¥ (y,4/,p]) =

3 Weak boson scattering

Now we consider the scattering of the weak bosons. The two-body scattering amplitudes
are functions of the total energy F and the scattering angle ¢ in the center-of-mass frame.
For the elastic scattering of the W bosons, there is an infrared singularity at ¢ = 0 due to
the t-channel diagram exchanging the massless photon. Although such a singularity will
be cancelled when the soft-photon emissions and higher loop corrections are taken into
account, it involves some technical difficulties to obtain a finite value of the amplitude
for the forward scattering. In order to avoid such difficulties, we consider the scattering
process: W, (p1) + W (p2) — Zr(ps) + Z1(p4) in the following. The subscript L denotes
the longitudinal polarization.

3.1 Scattering amplitude

As mentioned in section 2.3, the scattering amplitudes are easily calculated by utilizing
the 5D propagators. The scattering amplitude A is expressed by

A=A+ AV + A5, (3.1)

where A€, AV and AS are contributions from the contact interaction, the exchange of the

vector modes and that of the gauge-scalar modes, respectively. They are given by

A= 19 / dy {(udy)? + ()2} {07 + ()?)

4

x{2(e1 - €2)(e5 - €1) — (61 - €5)(e2 - €4) — (61 - €4)(e2 - €5) } s (3.2)
A =i 3 / ay / dy' Uz ()G (5,9 13Uy (') Pros

a,B=1,4

+igs Z /dy/ dy' Uz ()G’ (0,9 |p1a) Uy, (') Prazs, (3.3)

a,f=1,4

) (e1-e9)(eh - €})
A® = ig3 /0 dy Yow W)V ()= 5 =—
12

+195 Z / dy Y7, (v) Yz (y) {( €§)2(€2 <) + (&1 .82)2(82 <3) } , (3.4)

a=1,4 P13 DP1a




where g; (i = 1,2, 3,4) are the polarization vectors, p1o = p1+p2, P13 = P1—D3, P14 = P1—DP4,

P13uP13
(p1+ p3) ! (nuy — %)
P13

Pi3os = {2(;1 €1+ 2(p3-e1)ez — (€1 - €3

€3) ( )€3 3)
x{2(p2 - €i)e2 + 2(pa - e2)e; — (€2 - €1) (P2 +pa)}”
Praoz = {2(p1 - €1)e1 + 2(pa - €1)es — (€1 - €1)(p1 + pa) } (77;”/ - %)
14
< {2(p2 - €5)e2 + 2(p3 - €2)e3 — (€2 - €5)(p2 + p3)}” (3.5)
and the functions in the integrands are defined as
1 Loy 3 46 4 Lrg 6 4 3
Uwz = 5 <uwuz + UWUZ) ; Uwz =5 <UWUZ uwuz)
View = €2 {(uly ) uly — uly (uiy)'} Vi = 2672 {(u)Vu — uf (u)' }
1 TR SRy 4\, 6 4 1 6
Yyz = 5 {(UW) uy — uyy (uz) + (uy) vy — uy (uz) } )
6720 ’ /
Vivz = 5 { (uly)'ul — uly (u)’ = (i) u + iy () } (3.6)

Here we have used the relation p; - €;(p;) =0 (i = 1,2, 3,4).

The first and the second lines in (3.3) correspond to the ¢-channel and the u-channel
diagrams exchanging the W boson and its KK modes, respectively. The above expression
of the amplitude is a result of a cancellation between the gauge-dependent part Gs(y, ', |p|)
in the propagator of the vector modes and the gauge-scalar propagator G, (y,v', |p|). This
cancellation occurs due to the relation (B.16) and makes the resultant amplitude gauge-
independent. The contribution A5 is a remnant of the cancellation. The first line in (3.4)
corresponds to the s-channel diagram exchanging the neutral gauge-scalar mode (i.e., the
Higgs boson) while the second line represents the contributions from the ¢-channel and
the u-channel exchanges of the charged gauge-scalar modes. Notice that the Higgs bo-
son is massless at tree-level in the gauge-Higgs unification. It acquires a nonzero mass at
one-loop order.

The gauge invariance of the theory ensures the equivalence theorem [16], which states
that the scattering of the longitudinally polarized vector bosons is equivalent to that of
the (would-be) NG bosons eaten by the gauge bosons. In 5D models, the gauge-scalar
modes ¢(™ coming from A, play the role of the NG bosons in the equivalence theo-

rem [1, 17].2 Namely, the following relation holds for the longitudinal vector modes A(Ln).

n n ; M
T(A(L 1)’ . 7A(L D ?) = ClT(ZQO("l) 7190(7”) d)+ 0O <E2 > (3.7)

where all external lines are directed inwards, ® denotes any possible amputated external
physical fields, such as the transverse gauge boson, and M is the heaviest mass among the

When there exist additional bulk Higgs fields that break the gauge symmetry, the NG bosons become
mixture of modes from the bulk Higgs fields and A,.



external lines. A constant C; is gauge-dependent, but C; = 1 at tree-level.> The correc-
tion term is O(M?/E?) because of the 5D gauge invariance (see ref. [19], for example).
Eq. (3.7) is useful to discuss the high-energy behavior of the scattering amplitude A be-
cause the corresponding NG boson amplitude does not have O(E*) contributions,* which
makes it easier to numerically calculate the amplitude thanks to the absence of cancellations
between large numbers.

The scattering amplitude for the corresponding NG bosons comes only from the dia-
grams exchanging the vector modes.

L L
B=ig > /0 dy/o dy' Viiz (y) (01 + p3) "Gl (013, 1,5 ) (P2 + pa) Vi, ()
a,f=1,4

L L
+igd > /0 dy /0 dy' Vg () (1 + pa)" G (D14, y, 4 ) (02 + p3) Vigy (v),  (3.8)

a,f=1,4
where
1 R S
Vivz = 5 (vaZ + vy v > ,
4 e 6 4
Vivz = 5 (’UWZZ - ’UWUZ> . (3.9)

3.2 Various behaviors of the amplitudes

Here we show various behaviors of the scattering amplitudes given in the previous subsec-
tion. For the numerical calculation, we choose the gauge parameter as £ = 1, the 4D gauge
coupling g4 = g5/V'L as g7 = 0.1, and take the T boson mass my as an input parame-
ter. Then the size of the extra dimension L becomes fp-dependent after fixing myy. (See
eq. (2.18), for example.) The KK mass scale mgx = 7k/(ekr — 1) is also fy-dependent.
Thus the amplitudes are functions of the center-of-mass energy E, the Wilson line phase 6y
and the warp factor e*. The physical amplitude A is of course gauge-independent, and
the &-dependence of the NG boson amplitude B is small in high-energy region as can be
seen from (3.7). The 4 momenta and the polarization vectors of the initial and final states
are parameterized as in table 1. There, pw = (/E?/4 —m},, pz = \/E?*/4 —m?%, and ¢
is the scattering angle in the center-of-mass frame. Notice that the amplitudes A in (3.1)

and B in (3.8) are symmetric under ¢ < 7 — ¢.

3.2.1 Non-forward scattering

First we consider a non-forward (and non-backward) scattering. We choose the scattering
angle as ¢ = /3 in the following. Figure 1 shows the energy dependence of the scatter-
ing amplitudes. The solid and the dashed lines represent the scattering amplitudes for the
vector bosons A and for the NG bosons B, respectively. We can explicitly see that the equiv-
alence theorem holds both in the flat and the warped cases, and |B| — |A| = O(m?%,/E?).

#We can also take a gauge where C; = 1 at all orders of the perturbative expansion [18].
“For the non-forward (non-backward) scattering, O(FE?) contributions are also absent.



1= (E/2,0,0,py) e1(p1) = (pw, 0,0, E/2) /mw

p2 = (E/2,0,0, —pw) e2(p2) = (pw, 0,0, —E/2) /mw

ps = (E/2,pzsin¢,0,pz cos ¢) e3(ps) = (pz, (E/2)sin ¢,0, (E/2) cos ¢)/myz

ps = (E/2,—pzsing,0,—pzcos ¢) | e4(ps) = (pz, —(F/2)sin ¢,0,—(E/2) cos ¢)/myz

Table 1. The 4 momenta and the polarization vectors of the initial and the final states for

WH(p1) + W, (p2) — Zr(ps) + Zr(ps). E is the center-of-mass energy, pw = /E2/4 — miy,
pz =/ E?/4—m%, and ¢ is the scattering angle in the center-of-mass frame.

. . ; . 1.0 T T 7/,
024f,~~ 1
S~ 08} ’
0.22} T et -7
|A| 0.20f 1 | Al o8
|B| o.asf 1 1Bl o4f
0.16 0.2F
0.14f
. . I L 0.0 .
5 10 15 20 5 10 15 20

Figure 1. The energy dependence of the amplitudes for Wf + W, — Zr + Zr. The solid lines
represent the vector boson scattering A, and the dashed lines are the NG boson scattering 5.
The scattering angle is chosen as ¢ = m/3. In the flat case (the left figure), the amplitudes are
independent of the Wilson line phase 0y for 0 < 0y < 7/2.

In the flat case (kL = 0), the amplitude A is independent of the Wilson line phase 6y
in the range of 0 < f < 7/2. It approaches to a constant value at high energies. In the
case of the warped geometry, on the other hand, The amplitude has a large 6y-dependence
and increase as E?. It grows faster for larger fy.

These behaviors reflect the fy-dependences of the coupling constants among the gauge
and the Higgs modes and of the KK mass scale mik. Before explaining the behaviors of
the amplitude, let us see the energy dependence of B again by rescaling the unit of the
horizontal axes to mik. (Figure 2) Then we can see that the amplitude approaches to
constant values at sufficiently high energies even in the warped case. The constant values
vary depending on the warp factor, and are larger than the value in the flat case by a
factor kL for kL 2 O(1). The Oy-dependence we have seen in the right plot of figure 1
now almost disappears in the unit of mgk. It is cancelled by the fy-dependence of mkk
(see the beginning of section 3.2). The apparent f-dependence of the plots in the flat case
stems from the fy-dependence of mygk.

Now we will interpret the above behaviors of the amplitude. First of all, we should
notice that the model reduces to the “standard model” (SM), in which the Weinberg angle
is sin? @y = 3/4 and the Higgs boson is massless, when fy < 1 irrespective of the 5D
geometry. Every coupling constant in the gauge-Higgs sector takes almost the SM value
and the KK modes are heavy enough to decouple. Thus the amplitude takes the same
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Figure 2. The energy dependence of the amplitude in the unit of mgk. The solid, dotted, dashed
lines correspond to f#yy = 0.1, 1.0, 1.5, respectively.

value as SM up to the energy scale where the KK modes start to propagate, i.e., mkxk.
The amplitude takes an almost constant value at £ 2 O(10myy) in this case.

When 6y is not small, the coupling constants relevant to the amplitude deviate from
the SM value. In the warped case, the WW H and the ZZH couplings become smaller
than the SM values by cos(fy1/2) and cos 0y respectively, while the WW ZZ and the WW Z
couplings are almost unchanged [10, 11]. Thus O(E?) contributions miss to be cancelled
among the low-lying modes and the amplitude grows in the low-energy region. For larger
value of 0y (up to 7/2), the deviation of the couplings are larger and then the amplitude
grows faster. (See the right figure of figure 1.) This remaining O(FE?) contribution is
eventually cancelled by contributions from the KK modes. Namely, the amplitude ceases
to increase and approaches to a constant value when the KK modes start to propagate.

The flat spacetime is a special case. As we mentioned, the amplitude becomes almost
constant at £ Z O(10myp) when 0y < 1. For larger values of 0y, the WWZZ and
the WW Z couplings slightly deviate from the SM values because of the nontrivial y-
dependences of the mode functions for the W and the Z bosons [11], while the WW H and
the ZZ H couplings are now unchanged. Then the O(E?) contributions fail to be cancelled
among the low-lying modes, just like in the warped case. However the contribution from the
KK-modes completely cancel this O(E?), and the amplitude results in unchanged from the
O < 1 case. Namely the effect of the fy3-dependence of the WW ZZ and WW Z couplings
and that of the KK mass spectrum are completely cancelled and the amplitude becomes 6y-
independent for 0 < i < 7/2 in the flat case. In the range of 7/2 < 0 < 7, the amplitude
has a nontrivial fg-dependence. This stems from the fact that the relation my/my = 2
no longer holds (see eq. (2.18)) and mz also has a nontrivial fg-dependence in this region.

3.2.2 Forward scattering

Next we consider the forward scattering, i.e., ¢ = 0. In this case, an O(E?) contribution
remains and the amplitude monotonically increases even above mgg. This is because the
power counting of F for the amplitude changes around ¢ = 0. For example, the brace part
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Figure 3. The energy dependence of the amplitude at ¢ = 0. The solid, dotted, dashed lines
correspond to O = 0.1, 1.0, 1.5, respectively.

in (3.4) is expanded (for nonzero sin ¢) as

A, = (e1-€3)(e2-€}) n (e1 )(82 - €5)

Pis Pis
2 2 2 9m2 m2 4 4 9
_ B mW2—|— ﬂ;z . myymy + (mW;—mQZ)cos( o) LOEY.  (3.10)
dmi,m?, 2miymy meZE sin“ ¢

This means that the expansion becomes invalid when sing S O(mw /E). At ¢ = 0, this
quantity reduces to
(my +my)E? 2(mjy +m7)

Ay = - , (3.11)
C2mm(my —miy)? (mF —mi)?

and the leading term for the high energy expansion changes. Therefore an O(E?) contri-
bution is left in the total amplitude. Similar behavior of the amplitude is observed also
in the standard model. Figure 3 shows the energy dependence of the forward scattering
amplitude. We can see that the amplitude grows as E? in any cases. In the flat case,
the amplitude does not have the fp-dependence again. In the warped case, it varies for
different values of 0. For small values of 0y, the amplitude has little dependence on the
warp factor and takes almost the same value as the flat case. For larger values of 6y, it

becomes smaller in contrast to the non-forward scattering.

3.2.3 S-wave amplitude

The conventional bound for the tree-level unitarity is given by?®
lag| <1, (3.12)

where ag is the s-wave amplitude defined as

1
ap(E) = 321 (cos ¢) A(E, cos ¢). (3.13)

®More restrictive unitarity condition is proposed in ref. [20].

— 11 —



0.07
0.15F 0.061
0.05F
L 0.041
E |aol

0.05-

Figure 4. The s-wave amplitude as functions of E and 6y. The solid, dotted, dashed, dotdashed
lines correspond to kL = 30, 10, 3, 0, respectively.

Hence we now estimate the s-wave amplitude. As we mentioned above, the integrand grows
as E? in the region 1 — |cos ¢| S O(m¥,/E?) while it approaches to a constant for large E
in the other region of cos ¢. Therefore ag(E) behaves as O(E) at high energies. In fact, it
grows logarithmically in high-enery region as shown in the left plot of figure 4. The right
plot shows the f-dependence of ag(15myy). We can see from these plots that the amplitude
becomes larger for larger warp factor and larger sin(fy/2).% In the flat limit, it decreases
and has only a small #-dependence. In fact, it is independent of 0y for 0 < 6y < /2. The
small f-dependence for /2 < 6 < 7 originates from the fact that the relation mz/my =
2 no longer holds and myz becomes fy-dependent, which is peculiar to the SU(3) model.
Thus the details of the small g-dependence in the flat case is model-dependent.

In the above calculation, we have chosen the value of the gauge coupling as g7 = 0.1.
Since the tree-level amplitude is proportional to g7, it becomes four times larger if we take
g4 as the weak gauge coupling in the standard model. In this case, a scale A determined
by ag(A) = 1 is estimated as A ~ 1500myy for 6 = 0.1 and A ~ 150my for g = 1.5
when kL = 30, for example. This suggests that the perturbative unitarity will be violated
at a lower scale for larger sin(fy/2). In order to estimate the unitarity bound, we have to
consider other scattering processes and sum up all the possible final states including the
KK states. Thus the real cut-off scale Acy is expected as much lower scale than the above
values of A. In particular, in the latter example where mgg ~ 18my and the Higgs mode
hardly contributes to the unitarization, it is expected that Acy becomes around 1TeV as
in the standard model without the Higgs field.

4 Summary and discussions

We have investigated the weak boson scattering in the gauge-Higgs unification, focusing
on the dependence of the amplitude on the scattering energy F, the Wilson line phase 0y
and the warp factor . In this paper we consider a process: WE‘ +W, — Zp, + Zp in
the SU(3) model as the simplest example.

The 5D propagators are useful to calculate the scattering amplitudes because we need
not explicitly calculate the KK mass spectra nor perform the infinite summation over the

®Notice that the period of fy is 2. (See the first equation in eq. (2.17).)
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KK modes propagating in the internal lines. We have numerically checked the equivalence
theorem between the amplitudes for the longitudinal vector bosons and the (would-be) NG
bosons. The correction term is read off as O(m,/E?).

The amplitude behaves differently in the flat and the warped spacetimes. It is inde-
pendent of Ay in the flat case, while a nontrivial #-dependence comes out in the warped
case. These behaviors come from the fp-dependences of the coupling constants among
the gauge and the Higgs modes and of the KK mass scale mkxk in the case that the W
boson mass myy is fixed as an input parameter (see the beginning of section 3.2). For the
non-forward (and non-backward) scattering, the amplitude approaches to a constant at
high energies in both cases, but the asymptotic constant value is enhanced by a factor kL
in the warped case (kL 2 O(1)), comparing to that in the flat case. On the other hand,
the forward (backward) scattering amplitude grows as E2. The s-wave amplitude grows
logarithmically in high energy region just like in the standard model, and depends on Oy
in the warped case. Thus, even if we consider only the process W; + W, — Z1 + Zy,
the tree-level unitarity will be violated for quite large E. It is known, however, in higher
dimensional theories, the unitarity violation appears at a lower energy, by summing up all
the possible final states, exhibiting the non-renormalizability. Generically the amplitude
is enhanced in the warped case for 6 = O(1). This suggests that the tree-level unitarity
will be violated at a lower scale in the warped case than the flat case.

In ref. [12], three separate scales that determine the dynamics of the scattering process
are introduced, i.e., the electroweak breaking scale v, the Higgs boson decay constant fy,,”
and the KK scale mkgk. In our notation, these scales are related to each other as v =
fn01/2 and fi, = V2/(95VL) = V2mkx/(mgs) in the flat case, and v = f}, sin(fy/2) and
fn >~ 2Vke FL /g5 ~ 2myy /(mgsV/EL) in the warped case. In the terminology of ref. [12],
the case of fy < 1 is referred to as the ‘Higgs limit’, and the case of 6y = O(1) is as the
‘Higgsless limit’. The Higgs boson unitarizes the scattering process in the former while it
does not (or does only partly) in the latter.

For the purpose of estimating the scale of the unitarity violation, we should extend
our analysis for the following points. We should take into account the Higgs mass, which
is induced by the quantum effect, and the decay widths of the weak bosons. The latter
is necessary to discuss the process: WZ +W, — WZF + W, for example. The infrared
singularity for the forward scattering of this process is smeared out by taking into account
the width of the W boson. Furthermore, we have to sum up all the possible final states
including the KK states to discuss the unitarity. Since the SU(3) model is a toy model, we
should work in a more realistic model, for example, the SO(5) x U(1) model [9-11]. In the
flat spacetime, the spectrum of the latter model has a qualitatively different -dependence
from the former due to the nontrivial boundary conditions of the 5D gauge fields.® Each
mass eigenvalue is not a linear function of g (see figure 1 in ref. [11]) in contrast to the
SU(3) model. This difference may affects the fp-independence of the scattering amplitude
found in the our model. These issues will be discussed in a subsequent paper.

"This is the composite scale of the Higgs boson in the holographic dual picture.
8These boundary conditions are effectively obtained from the orbifold ones by introducing some
boundary terms.
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A Bases of mode functions

Here we define bases of mode functions, following ref. [21]. The functions Cy(y, m) and

So(y, m) are defined as two independent solutions to

d o, d )
4 20 ¢ — Al
(dye dy+m>f 0, (A1)
with initial conditions
Co(0,m) =1, Cy(0,m) =0,
So(0,m) =0, 55(0,m) = me F). (A.2)

For the derivation of 5D propagators in appendix B, it is convenient to define another
basis functions C,(y,m) and Sr(y, m) with initial conditions

Cr(L,m) =1, Cr(L,m) =0,
Sp(L,m) =0, St (L,m) = me” "), (A.3)
From the Wronskian relation, the above functions satisfy

Co(y, m)S(/](y7 m) - So(yv m)C(/](y7 m) =

Crly, m)Sy(y,m) — Sr(y,m)Cy(y,m) = me*?W=7h), (A.4)
The two bases are related to each other by
e_U(L)
Crly.m) = — {So(L, m)Coly, m) — Cy(L,m)So(y,m)} ,
St(y,m) = —{So(L,m)Co(y,m) — Co(L,m)So(y,m)} . (A.5)

Flat spacetime. In the flat spacetime, i.e., o(y) = 0, the basis functions are reduced to
CO(y’ m) = Cos(my), So(y’ m) = Sin(my)a
Colyym) =cos{m(y— L)}, Sulysm) =sin{my—L)}.  (A6)

Randall-Sundrum spacetime. In the Randall-Sundrum spacetime, i.e., o(y) = ky, the
basis functions are written in terms of the Bessel functions as

Ctnm) = 52 3 (1) 3 () () ()}
St = 2280 3 ()0 (2%) () (o))
Cutim) = s (1 (20 (7)o (2, (o))
St = 32 (5 (2. (20%) 0 (2w ()} a
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B Derivation of 5D propagators

Here we derive explicit forms of 5D propagators. We take the same strategy as in the
appendix of ref. [14]. Since the 4D vector part A, and the gauge-scalar part A, are
decoupled at the quadratic level with our choice of the gauge-fixing function, the mixed
components of the propagator (0|7'Af (p,y)Ag (—p,y')|0) vanish. In this section, we work
in the Scherk-Schwarz basis defined by (2.9) and (2.10).

B.1 Vector propagator

The gauge index @ = 1,---,8 is decomposed into two parts as a = 1,2,3/,8 and a =
4,5,6,7, according to the Zy-parities of Ajj. Then the 5D propagator injfj(p,y,y’) =
(01T A (p, y) AV (—p, y/)[0) satisfies

14 o} 1 4 « o (6%
(02 — 200, — ¥ p*} 5,7 + ¢ (5 - 1) Db ] Gol (09, y) = €7 n,0*8(y — o), (B.1)

with the boundary conditions,

0y Go(p,0,y) = G (p,0,y) =0,
(Ro)™ 0,GY(p, L,y) = (Rg)™ GJi(p, L,y/) = 0, (B.2)

where a constant matrix Ry is a rotation matrix for the indices of the adjoint representation
corresponding to a transformation by (L) defined in (2.10), i.e

(Ro)*” AY, = [N (L) AMQ(D)]" = tr {A*Q (L) AMQ(L)} - (B.3)

We can decompose Gﬁg (p,y,y) into the following two parts.

a PuPv a PuPv
G (..o = (mw— o )G Y o)+ RGP bl (B

where |p| = \/—p?. The first and the second terms correspond to the propagators for Afln)
and Aén), respectively. Writing G%ﬁ(y,y’, Ip|) as

Gy o pl) = Oy — )G (. o/ Ip]) + 0 — )G (w, ¢/, p)), (B.5)

the solutions to (B.1) satisfying (B.2) are given in the matrix notation for the index a =

(a,a) by

Gr<(y,9, Ip|) = Mo(y, [p))ar<(y'. |p|),
RoGr=(y, 9, Ip|) = My, [ph)er= (', Ipl), (B.6)

_[Co- 1y (O -1y
M0:< 50-14>’ ML_< SL-14>' (B.7)

where
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The unknown matrix functions ar-(vy/, |p|) and ars (v, |p|) are determined by imposing
the following matching conditions at y = 3/. The continuity of G at y = ¢’ leads to
the condition

GT< (y’ Y, |p|) = GT> (y’ Y, |p|)? (BS)

and we obtain from (B.1) the condition

{0,Gr=(y,9/,Ip]) = 8,Gr< (v, b))}, = €W, (B.9)

Using these conditions, we obtain the 5D propagators as

Gr<(y, 9/, Ip]) = €7 F Mo (y, [p )W (|p)ML (Y, |p|) Re,

Gr=(y,9, 1p]) = {Gr<(/ sy, p)}', (B.10)
where

W(|p|) = e 20 WT2ol) (ML RygMo — MLRyMy) (v, |p|) (B.11)

is y-independent from the Wronskian relation (A.4).
The part of the scalar modes Gs(y, v/, |p|) is obtained in a similar way, and it is related

to Gr(y,y's |p|) as
Gs(y,/,Ipl) = Gr(y, /s Il /V/€). (B.12)

B.2 Gauge-scalar propagator

Next we consider the propagators for the gauge-scalar modes. The 5D propaga-
tor iGS{yB(y,y’, Ip|) = (0|T A (p, y)Ag(—p,y’)|0> satisfies

{¢07e7 = p*} G (y, . Ipl) = €276 5(y — o), (B.13)

with the boundary conditions,
Gy (0, 1pl) = 0, {e=27G35 b (0,41, pl) = 0, (B.14)
(Ro)* Goa(L,y/, Ipl) = 8, {7 (Ro)™ G b (L. Ipl) = 0. (B.15)

These can be solved by the same manner as in the previous subsection. We find that
Gyy(y,y/spl) is related to Gs(y, 9/, [p]) as

1
ny< (y’ y,a |p|) = _Fayay/GS< (ya y/a |p|)’
1
ny> (y’ y/a |p|) = _Fayay’GS> (ya yla |p|) (B16)
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